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EXECUTIVE SUMMARY 
Introduction 
The COVID-19 pandemic originated in Wuhan, China in December 2019 and quickly spread 
across the globe. On March 11, 2020 the World Health Organization (WHO) officially declared 
COVID-19 a pandemic and by April 21, 2020, there were more than 2.5 million confirmed cases 
and over 175,000 deaths globally.  
In the United States (US), the situation evolved swiftly after the first case was confirmed on 
January 19, 2020. Limited testing posed disease surveillance challenges, and the spread of the 
disease gave rise to exponential growth in the number of cases, followed shortly thereafter by a 
rise in deaths. A major outbreak in the New York metropolitan area soon led to the US becoming 
the worldwide epicenter of the pandemic. As the strategy shifted from containment to mitigation, 
social distancing policies were adopted and the majority of US states issued stay-at-home orders. 
Fearing significant hospital stress and overload in areas with surging cases, efforts were made to 
increase healthcare system capacity to manage the crisis. As of April 21, 2020, over 820,000 
confirmed cases and over 44,000 deaths have been reported in the US. 
As state and federal policymakers monitor, prepare for, and respond to the COVID-19 pandemic, 
they have relied on statistical models to help predict the pandemic’s course and to understand 
how various strategies and interventions may affect health outcomes. To aid these efforts, we 
developed an infectious disease model and conducted a series of scenario analyses. The model 
is intended to help inform and educate policymakers—and the wider public—about the broad 
potential outcomes of mitigation strategies and future interventions. It is not intended to be 
predictive, as the actual outcomes of the pandemic will depend on the specific actions undertaken. 
Specific objectives include estimating the potential impact of the level of disease transmission, 
increasing health system capacity, timing of social distancing, level of social distancing, easing of 
social distancing, and a hypothetical drug intervention. 
Methods 
We developed a COVID-19 susceptible-exposed-infected-recovered (SEIR) model, with 
additional compartments for treatment and death, from a US perspective. In the model, people 
transition between the compartments over time as the disease spreads through the population. 
Disease transmission is represented in the model by the basic reproduction number (R0). R0 is 
influenced by characteristics of the virus and human behavior. An R0 value of less than 1 leads 
to the disease eventually extinguishing, while a value greater than 1 has the potential to spread 
exponentially and generate an epidemic or pandemic.  
The model estimates the number of people in each compartment (susceptible, exposed, infected, 
treated, recovered, and dead) daily over a 1-year period (January 1, 2020–December 31, 2020). 
The total number of emergency department (ED), hospital, and intensive care unit (ICU) visits 
and their associated costs were also calculated. Model inputs were obtained through a literature 
review of recent published studies and other publicly available sources. Values for the contact 
and infection rates were estimated by calibrating the model to observed US death rates up to April 
14, 2020. The model was used to conduct various scenario analyses, including reducing contacts 
to assess the effect of social distancing, increasing healthcare capacity, and reducing hospital 
length of stay (LOS) and mortality to assess the effect of potential pharmaceutical interventions. 
Model Scenarios and Findings 
Impact of level of disease transmission: Analyses were conducted to examine the potential 
impact of the level of disease transmission by varying R0, while assuming that social distancing 
reduces contact by 75% through the remainder of the year. Under these circumstances, we 
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estimate the peak health system capacity will not be exceeded. The estimated number of total 
infections ranged from 14.1 million (R0 = 2.2) to 57.4 million (R0 = 4.2), while the number of deaths 
ranged from 93,000 (R0 = 2.2) to 376,000 (R0 = 4.2). Total healthcare costs ranged from $13 
billion (R0 = 2.2) to $53 billion (R0 = 4.2). The base-case estimate (R0 = 3.2) results in 21.4 million 
infections, 141,000 deaths, and nearly $20 billion in total costs. 
Impact of health system capacity change: To examine the potential impact of changes in health 
system capacity, we devised 2 scenarios, where health system capacity is exceeded due to lower 
compliance with social distancing policies, and evaluated the impact of a small increase (+25%) 
and a large increase (+50%) in healthcare system capacity. In the tested scenarios, increasing 
healthcare system capacity reduced deaths by 5% to 16%. Increasing healthcare system capacity 
was sufficient to manage the scenario with minimal overcapacity (when increased by 50%) but 
was not sufficient to manage a scenario with substantial overcapacity. Avoidance of substantial 
healthcare system overcapacity through effective use of social distancing would be advisable. 
Impact of timing of social distancing: We examined the potential impact of implementing social 
distancing 1 week earlier and 2 weeks earlier, assuming R0 = 3.2 and a 75% reduction in contact 
due to social distancing. Initiating social distancing 1 week earlier led to a 68% decrease in 
infections and deaths compared to the base case, with an estimated 6.9 million infections and 
45,000 deaths. If social distancing was started 2 weeks earlier, a 90% decrease in infections and 
deaths would be achieved, with 2.1 million infections and 14,000 deaths. 
Impact of level of social distancing: We looked at the potential impact of the level or degree of 
social distancing from April 15, 2020 onward. This encompasses such factors as the types of 
public policies in place and the level of compliance by the public. The scenarios include low, 
moderate, and high levels of social distancing (60%, 75%, and 90% reduction in contact, 
respectively) and assume that the level of social distancing is maintained through the end of 2020. 
In the low scenario, the healthcare system capacity is exceeded in terms of hospital beds, ICU 
beds, and ventilators, while capacity is not exceeded in the other scenarios. The number of deaths 
varied substantially, with 1.05 million deaths for the low social distancing scenario, 141,000 
deaths for the moderate scenario, and 77,000 deaths for the high scenario. Estimated healthcare 
costs varied significantly as well. 
Impact of easing social distancing: We examined scenarios to ease social distancing policies 
in order to “reopen” the US economy. In all scenarios, we assumed that easing of social distancing 
resulted in a change from a 75% reduction in contact to a 50% reduction in contact. First, we 
considered uniform easing of social distancing beginning on June 1 with R0 = 3.2 (base case) and 
R0 = 2.2. When R0 = 3.2, a resurgence of cases could occur in the early fall, resulting in a total of 
203.6 million infections and 1.7 million deaths. On the other hand, if R0 = 2.2, uniform easing of 
social distancing would result in a slow but steady increase in infections, without a significant 
resurgence, resulting in a total of 24.6 million infections and 153,000 deaths. Second, we 
considered intermittent easing of social distancing, alternating between 2 months of easing 
(beginning on June 1) followed by 1 month of reimplementation of social distancing and 
alternating thereafter. In contrast to uniform easing, intermittent easing when R0 = 3.2 would 
significantly reduce the extent of resurgence, resulting in 127.8 million infections and 938,000 
deaths. And, when R0 = 2.2, intermittent easing would result in a step-down and virtual elimination 
of cases over the course of the year, resulting in 17.3 million infections and 113,000 deaths. 
Impact of a hypothetical drug intervention: A final set of scenarios were created to assess the 
potential impact of a hypothetical drug treatment. These scenarios use base-case assumptions 
(R0 = 3.2 and 75% social distancing) in which the health system is not at overcapacity. These 
scenarios assume the new treatment becomes available on July 1, 2020 and that it reduces 
hospital LOS and mortality to varying degrees. Using these assumptions, the model estimated 
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the hypothetical treatment would potentially save 5,000 to 15,000 lives over the remainder of the 
year. An effective drug intervention with a substantial reduction in mortality has the potential to 
change the risk/benefit calculus and may aid efforts to ease social distancing. 
Limitations 
These analyses are not intended as predictions but as examples of what could happen over the 
course of the pandemic based on potential state and federal policies adopted and actions taken. 
The analysis utilizes a basic SEIR model to deterministically model disease transmission at a US 
population level and is based on limited available data for some key model parameters (eg, R0, 
infection fatality rate, extent of social distancing). 
Conclusion 
This analysis was intended to inform policymakers on the potential impact of various 
pharmaceutical and non-pharmaceutical interventions to mitigate the COVID-19 crisis in the US. 
Social distancing is the primary intervention available to mitigate the pandemic, and outcomes 
are significantly affected by both its timing and extent. In areas where social distancing efforts fail, 
planning and preparations to increase health system capacity will save lives but may not be 
sufficient to manage surge conditions. Careful consideration should be given to when and how to 
ease social distancing given the potential exponential growth of COVID-19. Large-scale testing 
and disease surveillance to monitor conditions will be essential to successful easing of social 
distancing and to determine when strengthening social distancing policies may prove necessary. 
Effective utilization of these policy tools, and others, will help policymakers to navigate the 
pandemic and help to minimize the adverse health impacts and economic burden until more 
effective treatments, and ultimately a vaccine, become available. 
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    KEY LEARNINGS FOR POLICYMAKERS 
• The impact of an unmitigated COVID-19 pandemic would be dire, with a substantial 

number of deaths and a vastly overwhelmed healthcare system. 

• Social distancing is the single most effective intervention we currently have to 
mitigate the COVID-19 pandemic (until the availability of a highly efficacious 
treatment or vaccine). 

o The timing of social distancing is critical: Due to the potential of COVID-19 
cases to grow exponentially, early intervention makes a substantial difference 
in the number of infections and lives lost. 

o The level of social distancing is critical: Maintaining an effective R of <1 is the 
dividing line between avoiding and incurring a pandemic. 

• Increasing health system capacity to manage surge conditions is an effective life-
saving intervention. 

o Anticipating and predicting the timing and extent of a surge (eg, via testing 
and modeling) are critical to effective mobilization of resources. 

o However, no amount of capacity increase will be sufficient to handle a large 
surge; therefore, the preferred strategy is to utilize social distancing to avoid 
a surge. 

• Easing of social distancing involves a tactically and strategically complex cost-benefit 
balancing act. 

o Testing and surveillance will be crucial to monitor the effectiveness of social 
distancing policies and whether easing is warranted based on risks and 
benefits. 

o Large-scale testing followed by contact tracing and isolation may allow for 
easing of broader and blunter social distancing policies. 

o Public education is needed to avoid the “pandemic response paradox,” where 
policies leading to effective mitigation result in the call for removal of those 
policies as “not necessary.” 

• Pharmaceutical interventions currently under investigation may eventually reduce 
health system burden and patient mortality. 

o Significant reductions in mortality would have the potential to change the cost-
benefit landscape. 

o Development of an effective vaccine would essentially eliminate the need for 
social distancing and help to end the pandemic. 
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INTRODUCTION 
Background 
Overview of COVID-19 
COVID-19 is a disease caused by the novel SARS-CoV-2 coronavirus, a family of viruses that 
include forms of the common cold and more severe respiratory conditions such as severe acute 
respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS). While most COVID-
19 cases are mild and may even present as asymptomatic, a minority of patients, predominantly 
the elderly and immunocompromised, experience serious respiratory symptoms and require 
hospitalization. In more severe cases, patients develop acute respiratory distress syndrome 
(ARDS) and require intensive care unit (ICU) support and mechanical ventilation.1 

The SARS-CoV-2 virus was first identified following an outbreak of pneumonia cases of unknown 
origin that occurred in Wuhan, Hubei, China in December 2019.2 Since then, the disease has 
rapidly spread across the globe to over 200 countries.3 The World Health Organization (WHO) 
officially declared COVID-19 a pandemic on March 11, 2020.4 As of April 21, 2020, there were 
over 2.5 million confirmed cases of COVID-19 and over 175,000 associated deaths globally. 
COVID-19 in the United States (US) 
The first confirmed US case was on January 19, 2020 in Washington state a few days after an 
infected individual returned from travel to Wuhan, China.5 Shortly thereafter, the White House 
issued a travel suspension on foreign nationals from China that took effect on February 2.6 The 
first community-acquired case occurred on February 28 in California, followed by the first US 
death in Washington state on February 29. It soon became evident that efforts to contain the 
disease were failing, and the US declared a national emergency on March 13.7 Inadequate access 
to diagnostic testing and asymptomatic transmission challenged early disease surveillance 
efforts, limited opportunities for contact tracing and case isolation, and ultimately led to further 
spread of COVID-19 in the US. 
On March 16, the White House issued social distancing guidelines, and several states quickly 
followed with stay-at-home orders to limit the spread of COVID-19.8 By April 7, a total of  42 states 
plus the District of Columbia had enacted stay-at-home orders.9 These strategies were intended 
to “flatten the curve” (ie, reduce the size of the peak in COVID-19 cases) by minimizing contacts 
and transmission of the disease to reduce health system burden. Despite these efforts, the US 
became the worldwide epicenter of the pandemic, with over 820,000 confirmed cases and over 
44,000 deaths as of April 21, 2020. The New York metro area and others with surge conditions 
faced shortages of hospital beds, ICU beds, ventilators, medical staff, and personal protective 
equipment (PPE). 
Forecasting the Pandemic 
As healthcare resources became scarcer, and cases and deaths per day increased exponentially, 
efforts to model the potential impact of the pandemic grew. Epidemiological models can help 
inform policymakers of potential outcomes of diseases to better plan mitigation strategies and 
manage resources. Projections from an infectious disease model developed by the Imperial 
College London were released on March 16, 2020 and were effective in encouraging broader 
implementation of social distancing across the globe.10 Another infectious disease model 
developed by the Institute for Health Metrics and Evaluation (IHME) at the University of 
Washington has been widely utilized by US state and federal officials to inform policymaking 
related to resource allocation and implementation of social distancing measures during the 
pandemic.11 As the pandemic progresses, it is imperative to continue to refine current COVID-19 
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models and develop new ones to ensure the US response to the crisis is in alignment with the 
best available projections. 
 
Objective 
To examine the potential impact of various public health policy options and mitigation strategies 
on the COVID-19 pandemic in the US, we developed an infectious disease model and conducted 
a series of scenario analyses. The model is intended to help inform and educate the public and 
policymakers about the potential outcomes of mitigation strategies and future interventions. It is 
not intended to be predictive, as the actual outcomes of the pandemic will depend to a large extent 
upon the specific actions taken. 
The model examines the potential impact of both non-pharmaceutical and pharmaceutical 
interventions. Specific objectives include estimating the outcomes for the following scenarios: 

• Unmitigated pandemic (for comparison) 
• Impact of R0 (level of disease transmission) 
• Impact of increasing health system capacity 
• Impact of timing of social distancing 
• Impact of level of social distancing 
• Impact of easing social distancing 
• Impact of a hypothetical drug intervention 

 

METHODS 
Model Design 
We modeled the COVID-19 pandemic in the US using a susceptible-exposed-infected-recovered 
(SEIR) model.12 SEIR models utilize compartments that people transition between over time to 
model the transmission of a disease through a population (eg, people start in the susceptible 
compartment, may move to the exposed compartment, then to the infected compartment, and 
finally to the recovered compartment). The exposed compartment represents the latent period 
from when the disease has been transmitted to the time that a person becomes infectious. SEIR 
models are operationalized through a series of differential equations governed by a set of 
parameters to reflect the dynamics of disease transmission and recovery. 
There are variations on the SEIR model, and for the purposes of this analysis, we supplemented 
a basic SEIR model with additional compartments for treated and dead to better model the 
treatment and recovery process for the novel coronavirus. The treated group was divided into two 
separate compartments for hospitalization and ICU. In the model, infected patients with mild 
disease were assumed to recover, while patients with severe disease are treated in the hospital, 
and critical patients are treated in the ICU. Hospitalized patients either recover or die. Our model, 
therefore, represents a susceptible-exposed-infected-treated-recovered-dead (SEITRD) model 
as shown in Figure 1. The model equations are shown in Appendix B (Figure B1). 
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Figure 1. Model Structure 

 
 
Beta (β) represents the infection parameter, which is characterized by the infection rate per 
infected person per day. Sigma (σ) represents the latency parameter, the rate per day at which 
exposed people become infectious. Gamma (γ) represents the recovery parameter, the rate per 
day at which the infected recover. Finally, delta (δ) represents the mortality parameter, the 
proportion of those infected who die. The dotted line signifies that the infected transmit the disease 
to the susceptible. The interaction between the susceptible and infected population makes 
disease transmission models highly dynamic and very sensitive to changes in certain parameters 
such as the contact rates. The model was designed to incorporate the potential effect of health 
system overcapacity on mortality. When the number of patients requiring a resource (ie, hospital 
bed, ICU bed, ventilator) exceeds the capacity of the healthcare system, an additional relative 
risk is applied to the mortality rate for hospitalized patients and is scaled to the extent of 
overcapacity, resulting in an increase in the effective infection fatality rate (IFR).  
The model was constructed to allow assessment of the potential impact of various interventions 
on the course of the pandemic and outcomes. Interventions include both non-pharmaceutical 
interventions to mitigate the spread and pharmaceutical interventions (drugs to treat the disease). 
We considered 2 non-pharmaceutical interventions: (1) reducing contacts (ie, social distancing) 
to reduce the effective R and (2) increasing health system capacity (number of hospital beds, 
number of ICU beds, and number of ventilators) to reduce the impact of health system 
overcapacity on mortality. We also assessed the potential impact of a hypothetical pharmaceutical 
intervention that would improve the recovery rate among hospitalized patients and thereby reduce 
hospital length of stay (LOS) and mortality. Appendix B (Figure B2) outlines how these 
interventions act on the model structure. 
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Model Inputs 
Model inputs were obtained through a literature 
review to identify plausible values based on the data 
available at the time of the analysis. Population 
parameters were based on the US Census, and the 
model was seeded with an assumed single US case 
on January 1, 2020, two weeks prior to the first 
known case on January 15. Parameters for disease 
infection dynamics were based on values for the 
latent and infectious period from the literature. 
Values for the contact and infection rates were 
estimated by calibrating the model to observed US 
death rates (see “Model Calibration” for additional 
information). The distribution of infected patients by 
disease severity was estimated based on observed 
data and recent published studies. Values for 
baseline mortality parameters were obtained from 
published studies and calibrated to yield an overall 
IFR consistent with values from the literature. The 
impact of mortality due to health system 
overcapacity was estimated based on data from a 
published literature review and on observed data for 
New York (overcapacity) compared to other regions 
in the US (not overcapacity). Healthcare system 
capacity was based on estimates from publicly 
available sources. Healthcare utilization parameters 
(eg, occupancy, ventilator utilization, and length of 
stay) were obtained from published studies and 
publicly available sources. Finally, cost estimates 
were obtained from publicly available sources.  
Appendix A (Table A1) provides a full list of the 
model parameters, values, sources, and other 
relevant information. 
 
Model Outputs 
The model estimates the number of people in each compartment (susceptible, exposed, infected, 
hospital, ICU, recovered, and dead) daily over a 1-year (365-day) period from January 1, 2020 to 
December 31, 2020. From these data, we obtain the estimated peak day for infections and 
hospitalizations. The maximum utilization of healthcare resources (ie, hospitals beds, ICU beds, 
and ventilators) is calculated as the number needed divided by the capacity and expressed as a 
percentage. The cumulative number and percentage of susceptible, infected, recovered, and 
dead were estimated at the end of the year, with the number recovered and dead expressed as 
a percentage of those infected.a Finally, the model calculates the number of emergency 
department (ED), hospital, and ICU visits as well as ED, hospital, ICU, and total costs. 

                                                           
a Note that to attempt to better reflect the number of actual cases (including asymptomatic and undiagnosed cases), 
we are utilizing an infection fatality rate rather than a case fatality rate, the difference being that the former is the fatality 
rate among all infected persons, whereas the latter is the fatality rate among confirmed cases. 

Basic Reproduction Number: R0 
The basic reproduction number (R0) 
is a measure of the dynamics of 
disease transmission. The R0 
represents the number of people 
that each infected person will, on 
average, infect. The R0 determines 
whether an epidemic will occur 
within a population. If the R0 is <1, 
the disease will extinguish, while if it 
is >1, it has the potential to spread 
exponentially and generate an 
epidemic. The R0 is a function of the 
infection rate multiplied by the 
contact rate multiplied by the 
duration of infectiousness.13 The R0 
is influenced by characteristics of 
the virus and human behavior.14  
Reducing contacts through “social 
distancing” provides a means to 
avoid or mitigate an epidemic. 
Reducing contacts changes the 
basic reproduction number to an 
effective reproduction number (R). 
To avoid an epidemic, R must be 
reduced below 1, which means that 
the percentage reduction in contacts 
required is 1 - 1/R0. Note that this 
also represents the proportion of the 
population that must be vaccinated 
(or recovered) to achieve herd 
immunity. 
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Model Calibration 
Given the availability of data regarding the course of the pandemic to date, we calibrated the 
model to the time series data for COVID-19 deaths in the US from the Johns Hopkins University 
Coronavirus Resource Center.15 The baseline input for the contact rate (which influences the R0) 
was calibrated to yield modeled deaths approximating the observed deaths through April 14, 
2020. The observed deaths provide the most reliable metric for purposes of model calibration, as 
the deaths due to COVID-19 better represent the true number of fatalities than the confirmed 
cases represent the true number infected. While both are likely an undercount, as even some 
COVID-19-related deaths may not be properly counted (eg, due to a failure to test, false negative 
test, or classification of a COVID-19 death due to other cause), the number of confirmed cases is 
a greater undercount of the infected population due to limited testing and the presence of a 
significant number of mild and asymptomatic cases that go undetected.16 This approach is similar 
to that utilized by IHME in the development of their COVID-19 analysis.11 Appendix B (Figure B4 
and Figure B5) shows the modeled and observed deaths and cases, respectively, through April 
14, 2020. The model estimates that approximately 1 out of 15 infected patients has been 
diagnosed, which is consistent with the high 20% test positivity rate in the US that is indicative of 
a substantial undiagnosed population.17 

 

MODEL SCENARIOS AND FINDINGS 
Unmitigated Scenarios 
Analyses were conducted to estimate the potential impact of an unmitigated pandemic with 
scenarios for low R0, moderate R0, and high R0, along with a scenario for a moderate R0 with 
inclusion of the impact of increased mortality due to health system overcapacity (Appendix A, 
Table A2). Note that these analyses are not calibrated to the actual data to date and represent a 
theoretical maximum impact of the pandemic, as they all assume that no actions are undertaken 
to mitigate or reduce the spread of disease. Accordingly, these results should not be interpreted 
as predictions of the COVID-19 pandemic but are provided instead to understand the potential 
dynamics of the pandemic for purposes of comparison. 
Lower R0 results in a later peak, lower peak utilization, fewer infections and deaths, and lower 
costs, while higher R0 results in earlier peak, higher peak utilization, more infections and deaths, 
and higher costs. In an unmitigated pandemic, the model estimates 1.83 million deaths when R0 
= 2.2 (Appendix B, Figure B5), 2.07 million deaths when R0 = 3.2 (Figure 2), and 2.13 million 
deaths when R0 = 4.2 (Appendix B, Figure B6). None of these estimates includes the potential 
impact of health system overcapacity. When we add in the effect of health system overcapacity, 
with an R0 = 3.2, mortality increases to an estimated 2.89 million deaths, representing a 40% 
increase in mortality, demonstrating the potentially significant impact of health system 
overcapacity on mortality. 
These scenarios represent a theoretical “worst case” scenario such that if the virus were allowed 
to spread unchecked and no one changed their behavior at all, the consequences would be very 
severe. Most of the population would be infected, and the healthcare system would be overloaded 
at levels ranging from 600% to 2,700%. Healthcare costs would be substantial, ranging from $250 
to $300 billion.  
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Figure 2. Unmitigated Pandemic (R0 = 3.2) 

 
 
Impact of R0 (Level of Disease Transmission) 
Analyses were conducted to examine the potential impact of varying R0 from April 15 onward using 
the model calibrated to US deaths through April 14. These scenarios also include the impact of 
social distancing measures adopted in mid-March through early April. The extent of social 
distancing (Appendix B, Figure B7) was estimated based on the timing of state stay-at-home orders 
and the proportion of the US population represented by those states, assuming that states with 
stay-at-home orders reduced contact by 75% while states without stay-at-home orders only reduced 
contact by 25%. It was also assumed that prior to the introduction of stay-at-home orders issued by 
states that social distancing began to take effect on March 16, when social distancing guidelines 
were issued by the federal government. Finally, these scenarios all assume that social distancing 
remains in effect at a 75% reduction in contact through the remainder of the calendar year. 
The R0 in the US was estimated in the calibrated model based on observed data from January 1, 
2020 through April 14, 2020 to be approximately 4.2. Note that this value is higher than other 
estimated R0 values for the coronavirus. However, this is because the US pandemic to date is 
largely composed of data from New York, the largest and fastest growing outbreak in the world. 
New York is a likely outlier, due to its high population density and levels of local and international 
travel; therefore, we assumed from April 15 onward as the pandemic spreads through the rest of 
the US a lower R0 of 3.2 for our base-case analysis, along with a variety of scenarios for alternative 
lower and higher values (Appendix A, Table A3). The R0 may also change due to seasonal effects 
on virus transmission.18 

In all tested scenarios, so long as social distancing with a 75% contact reduction is maintained 
throughout the remainder of the year, we estimate the peak health system capacity will not be 
exceeded. The peak number of infections and hospitalizations will occur in April, except for a high 
R0 of 4.2, in which case they peak in May. The estimated number of deaths ranges from a low of 
93,000 (R0 = 2.2) to a high of 376,000 (R0 = 4.2). The number of infections ranges from 14.1 
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million (R0 = 2.2) to 57.4 million (R0 = 4.2). Finally, total healthcare costs range from $13 billion 
(R0 = 2.2) to $53 billion (R0 = 4.2). The base-case estimate (R0 = 3.2) results in 21.4 million 
infections and 141,000 deaths. Figure 3 shows the forecast outcomes for the base-case scenario 
(R0 = 3.2) with social distancing of 75% maintained through the rest of the year. Figure 4 shows 
the outcomes for the base-case scenario with the susceptible and recovered groups removed for 
clarity. 

Figure 3. Base-Case Scenario (All Outcomes) 

 

Figure 4. Base-Case Scenario (Susceptible and Recovered Groups Removed) 
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Impact of Health System Capacity Change 
To examine the potential impact of changes in health system capacity, we devised 2 scenarios 
where health system capacity is exceeded, because if social distancing is maintained at a 75% 
reduction (base case) or greater, the healthcare system is not expected to be at overcapacity. 
The first scenario involves very low compliance of social distancing with a 50% contact reduction. 
The second scenario is low compliance of social distancing with 60% contact reduction. In each 
of these scenarios, we evaluated the impact of changes in healthcare system capacity by 
assessing the effect of a small increase in capacity (+25%) and a larger increase in capacity 
(+50%) (Appendix A, Table A5). 
Figure 5 and Figure 6 show the potential impact of increasing health system capacity. In each 
scenario for the base case (+0% increase), the healthcare system is substantially overcapacity. 
In the base case, ICU beds and ventilator capacity are more overutilized than hospital beds. 
Increasing overall health system capacity by 25% or 50% is not enough to accommodate all 
patient needs in the 50% social distancing scenario. In the 60% social distancing scenario, 
increasing capacity by 50% is sufficient to meet patient treatment needs. This demonstrates that 
increasing capacity can potentially help to ameliorate moderate levels of overcapacity but likely 
not high levels of overcapacity. The model incorporates the potential impact of health system 
overcapacity on mortality, and in these scenarios, by increasing health system capacity, the 
potential reduction in deaths is estimated to be 5% to 16%. 

Figure 5. Impact of Increasing Health System Capacity (With 50% Social Distancing) 
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Figure 6. Impact of Increasing Health System Capacity (With 60% Social Distancing) 
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Figure 7. Estimated Deaths Over Time by Timing of Social Distancing 
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Figure 8. Estimated Deaths Over Time by Degree of Social Distancing 
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Figure 9. Impact of Uniform Easing of Social Distancing (R0 = 3.2) 

 

Figure 10. Impact of Uniform Easing of Social Distancing (R0 = 2.2) 
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Figure 11. Impact of Intermittent Easing of Social Distancing (R0 = 3.2) 

 

Figure 12. Impact of Intermittent Easing of Social Distancing (R0 = 2.2) 
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scenario (R0 = 3.2 and 75% social distancing) in which the health system is not at overcapacity. 
These scenarios assume a hypothetical new treatment becomes available on July 1 that reduces 
LOS and mortality as follows: (1) reduce LOS by 15% and mortality by 25%; (2) reduce LOS by 
25% and mortality by 50%; and (3) reduce LOS by 50% and mortality by 75%. 
Figure 13 shows that a drug intervention introduced on July 1 could potentially save 5,000 to 
15,000 lives over the remainder of this year under the base-case scenario. The potential effect is 
somewhat attenuated since most deaths would have already occurred by July 1 under a scenario 
where social distancing is maintained at 75% through the rest of the year. If, however, social 
distancing is eased and cases increase, the potential benefit of a drug intervention would increase 
significantly. 

Figure 13. Impact of a Drug Intervention on Deaths  

 

DISCUSSION 
This model-based analysis examined the potential impact of pharmaceutical and non-
pharmaceutical interventions to mitigate the COVID-19 crisis in the US. We developed a SEITRD 
model and parameterized the model using available data to assess various scenarios and 
interventions. Non-pharmaceutical interventions are already being employed by policymakers to 
mitigate the pandemic. Pharmaceutical interventions may soon become available as various 
existing and investigational drugs are being studied in human clinical trials for COVID-19. It is our 
intention that these analyses may provide some insights and assist policymakers with 
implementing strategies to better navigate the pandemic. 
Our unmitigated analysis (R0 = 3.2), representing a theoretical “worst case” scenario, estimated 
2.07 million deaths and is in line with estimates from other analyses. The Imperial College London 
model estimated 2.2 million deaths in the US over the course of an unmitigated pandemic.10 Worst 
case projections from a Centers for Disease Control and Prevention (CDC) model estimated a 
potential 1.7 million deaths,20 while a separate analysis led by a former CDC director estimated 
up to 1.6 million deaths in the US.21 Notably, these analyses do not include the potential impact 
of health system overcapacity on mortality. Our analysis attempts to account for this by adding 

141,000

136,000

131,000

126,000

115,000

120,000

125,000

130,000

135,000

140,000

145,000

Base Case 25% mortality
reduction

50% mortality
reduction

75% mortality
reduction

# 
of

 D
ea

th
s



 
21 

the additional risk of mortality during conditions of overcapacity. When this is added to the 
unmitigated analysis, the model estimates 2.89 million deaths, a substantial increase. 
Our base-case analysis utilizes an R0 value of 3.2 and estimates 141,000 deaths. This R0 is higher 
than preliminary estimates for SARS-CoV-2, which range from 2.2 to 2.7,22 and higher than the 
2.4 value used in the Imperial College London model.10 However, the author of that study is 
reported to have since adopted a revised R0 estimate of over 3.23 A recent study estimated an R0 
value as high as 5.7 after reassessment of the data from China.22 When we calibrated our model 
to real-world data for US deaths, we obtained an estimated R0 of 4.2. However, for the base case, 
we utilized a value of 3.2 given that the calibrated value was largely based on the impact of the 
exponential growth observed in the New York metropolitan area, which we believe is likely to be 
an outlier for the rest of the country. 
Since the R0 value may have a significant impact on the model outcomes, we conducted a series 
of analyses to explore the potential outcomes of the calibrated model with different R0 values 
under the assumption that the current levels of social distancing remain in place for the remainder 
of 2020. We estimate 14.1 million (R0 = 2.2) to 58.3 million (R0 = 4.2) infections and 93,000 (R0 = 
2.2) to 376,000 (R0 = 4.2) deaths in the US over the course of 2020. These estimates are roughly 
in line with other available estimates. The White House provided initial estimates of 100,000 to 
240,000 deaths in 2020.24 Analyses from IHME initially estimated 81,114 cumulative deaths (95% 
confidence interval [CI]: 38,242–162,106) from COVID-19 through July 2020 and, as of April 19, 
these have been revised down to 60,308 deaths (95% CI: 34,063–140,381) on their website.11 
Note that the IHME projections for April 18 were 34,897 deaths, while actual deaths according to 
Johns Hopkins were higher at 38,664. At the end of July, our base-case model (R0 = 3.2) 
estimates a total of 132,000 cumulative deaths, while our scenario analysis with an R0 of 2.2 
estimates a cumulative 92,000 deaths, figures that are higher than the IHME model, but both lie 
within their CIs. Additional models have provided various estimates which are available on a CDC 
website.25 

Many states and communities have been preparing for a surge in hospital demand by COVID-19 
patients. These efforts include canceling elective surgeries, adding beds, expanding staff, 
obtaining additional medical equipment, setting up field hospitals, and transferring patients to 
alternative sites of care. Our analysis shows that modest levels of health system overcapacity can 
potentially be managed by increasing capacity. However, if the pandemic is not well controlled 
and there is a large surge in cases, these efforts may not be enough, as healthcare demand could 
still potentially exceed capacity by 10- to 12-fold. For instance, hospitals in the New York 
metropolitan area were overwhelmed despite the state’s extensive efforts to expand capacity. On 
the other hand, in some less dense and rural areas that have implemented effective social 
distancing policies, hospitals have been well undercapacity with concern about having to lay off 
under-utilized staff. Navigating a course through the pandemic to avoid unmanageable surges 
while maintaining hospital financial stability will require careful policy and resource coordination 
between local, state, and federal policymakers. 
The timing of social distancing makes a dramatic impact on both the number of infections and 
deaths and on costs. Starting social distancing 1 week earlier would have reduced the number of 
infections and deaths by 68% (saving an estimated 96,000 lives). Initiating social distancing 2 
weeks earlier would have reduced infections and deaths by 90% (saving an estimated 127,000 
lives). These estimates are very similar to estimates from other researchers showing a 60% 
reduction in estimated deaths (23,000 vs 60,000) if social distancing were implemented 1 week 
earlier and a 90% reduction (6,000 vs 60,000) if implemented 2 weeks earlier.26 Policymakers 
should be keenly aware of the potential impact of conditions of exponential growth and the 
importance of acting expeditiously based on timely surveillance and sufficient testing. 



 
22 

Our analysis also demonstrates the potentially dramatic impact of the degree of social distancing 
on outcomes. For social distancing to effectively mitigate disease transmission, the effective R 
must be reduced to near or preferably below 1, and near this value there are significant non-
linearities (ie, small changes in social distancing can result in large impacts). In the base-case 
analysis, an R0 of 3.2 and a 75% reduction in contact results in an effective R of 0.8 and the 
pandemic is controlled. However, when social distancing is weakened to 60% (R = 1.28), deaths 
increase by over a factor of 7. When it is strengthened to 90% (R = 0.32), deaths are nearly cut 
in half compared to the base case. These scenarios reflect the importance of maintaining effective 
levels of social distancing. Indeed, real-world evidence to date, in the US and around the world, 
has demonstrated that social distancing is the single best intervention we currently have to 
mitigate and suppress the spread of COVID-19. However, some geographic areas have 
experienced weaker implementation and maintenance of social distancing policies, with poor 
compliance and backlash by a portion of the public and some questioning the need for social 
distancing once levels of infection have been reduced.27 Some Asian countries that initially 
responded with the most strict and effective policies to control the virus have recently begun to 
experience a resurgence in cases as social distancing policies were eased.28 Research on the 
effectiveness of social distancing policies would better inform policymakers and help them to 
adopt high-value policies that minimize the spread of disease with minimal impacts on people, 
communities, and businesses. 
Much of the US has yet to reach the peak of the COVID-19 epidemic, and there has already been 
considerable attention focused on easing social distancing and “reopening” the economy. The 
economic pressures are profound, with the economic fallout from the pandemic expected to 
exceed the Great Recession of 2008 and perhaps even rivaling the impact of the Great 
Depression. As of April 16, 2020, the US Bureau of Labor Statistics reports that 22 million jobs 
have been lost.29 A variety of plans for reopening the economy have recently been released.30 
The White House has also issued a set of guidelines to state and local officials regarding 
reopening of their economies.31 However, projections from the Department of Health and Human 
Services forecast that cases and deaths may rise, potentially substantially, when social distancing 
is eased.32 And a new analysis by Harvard researchers showed that the transmissibility of the 
SARS-CoV-2 virus may require intermittent social distancing until 2022 to adequately mitigate the 
pandemic until herd immunity is acquired or a vaccine becomes available.18 Planning and 
implementing an effective reopening strategy that balances health and economic outcomes is 
arguably the greatest challenge faced by countries right now. Substantial testing will be necessary 
to both monitor disease transmission to prevent outbreaks and to reduce transmission of active 
cases, particularly asymptomatic patients, as social distancing policies are eased. 
To understand the potential impact of easing social distancing, we conducted a set of 4 scenario 
analyses: (1) uniform easing of social distancing (R0 = 3.2); (2) uniform easing of social distancing 
(R0 = 2.2); (3) intermittent easing of social distancing (R0 = 3.2); (4) and intermittent easing of 
social distancing (R0 = 2.2). In scenario 1, after social distancing successfully drives down COVID-
19 cases, we encounter an even larger resurgence in the fall of 2020, which would likely require 
an extended shutdown period, potentially worsening economic outcomes and resulting in 
substantially more deaths. In scenario 2, after successful social distancing, we may find that 
easing social distancing results in a slow and steady increase in cases, which may be 
manageable, particularly if an effective treatment for COVID-19 becomes available. In scenario 
3, intermittent social distancing helps to provide significantly better control of COVID-19 than 
uniform easing but at an additional economic cost and burden that must be weighed by the public 
and policymakers. Finally, scenario 4 is the most favorable, where intermittent social distancing 
could potentially quell the threat posed by COVID-19 until a vaccine becomes available while 
limiting the economic impact. 
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Finally, in addition to social distancing, drugs can be impactful with the potential to reduce LOS 
and mortality in patients with COVID-19 with severe or critical disease. Reductions in LOS would 
help to address issues of health system overcapacity by allowing earlier discharge of patients. 
Reductions in mortality, if substantial enough, would potentially help shift the cost-benefit calculus 
on easing some of the more restrictive social distancing policies. For instance, if our baseline 
assumption of an IFR of 0.66% is approximately correct, then a drug that can reduce mortality by 
around 80% would reduce the IFR to 0.13%. This IFR would be more in the range of the fatality 
associated with the seasonal flu and could provide policymakers and the public with the 
reassurance they need to ease social distancing for the benefits of a more open economy. 
Currently, clinical trials are underway for remdesivir, hydroxychloroquine, ritonavir/lopinavir, and 
ritonavir/lopinavir with interferon-beta.33 New data suggest hydroxychloroquine may not be 
effective and may cause potentially fatal heart rhythm disorders.34 Preliminary evidence indicates 
that remdesivir, originally developed as a treatment for Ebola, may improve patient outcomes, 
including both reducing LOS and improving survival.35 In the meantime, while the world awaits 
the availability of safe and effective treatments, non-pharmaceutical interventions remain our 
primary policy tool. 
Limitations 
There are a few important limitations to this analysis. First and foremost, the modeling scenarios 
provided herein are intended as hypothetical analyses of the following form: if these conditions 
are met, then these outcomes would be anticipated. It should be stressed that the scenarios and 
outcomes are not intended as predictions of what will happen. The primary reason for this, as 
should be evident from the analyses, is that what will happen is largely a matter of what policies 
are enacted, when they are enacted, and the extent to which they are followed. A pandemic is 
not a deterministic phenomenon, and human behavior from now and over the remainder of the 
pandemic will largely determine what happens. 
Second, the SIR compartment model approach used in this analysis is a relatively simple form of 
epidemiologic modeling that assumes random and uniform mixing in a closed population and may 
potentially overestimate the extent of disease transmission. We modeled the disease and 
outcomes for the US population as a whole; however, the US is geographically heterogeneous 
and composed of communities with very different characteristics (eg, extent and timing of initial 
infections, density, size of households, degree of contact within and outside of the community, 
and extent to which social distancing policies are adopted and when). These characteristics could 
result in very different disease transmission dynamics within and across communities, as could 
seasonal effects in transmissibility.18 Our model does not incorporate the impact of age, which 
appears to have a significant effect on disease transmission and mortality. Other models have 
conducted analyses at the state or even county level,11 while some have conducted 
microsimulations to model potential interactions between individuals in households, schools, and 
workplaces.10 While these more sophisticated methods may offer some advantages, the results 
of this analysis are generally consistent with these analyses, and we believe a simpler analysis 
may be more accessible and instructive for policymakers to help understand the broad effects of 
different types of available interventions. 
Third, despite the growing amount of COVID-19 research, there are still limited available data 
regarding some key parameters to inform models.36 For instance, data on the IFR are limited due 
to a lack of information regarding the true number of infected people, since the confirmed case 
counts represent a significant underestimate. Eventually serologic studies will allow for more 
precise estimates. In the meantime, a relatively small change in the IFR can result in a significantly 
different number of estimated deaths in the analysis. While the number of deaths is less likely to 
represent an undercount, some patients without a confirmed diagnosis (eg, due to lack of testing) 
may have their death attributed to other causes. Furthermore, the real impact of the COVID-19 
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crisis extends even beyond patients with the disease, as many patients with other conditions may 
suffer morbidity or mortality from lack of access to medical care and medicines.37 The true 
reproduction number (R0) and the extent of social distancing in the community (eg, most current 
measures such as miles traveled are proxies) are notably difficult to estimate. Costs are also 
extremely difficult to estimate under current circumstances. We utilized publicly available cost 
estimates that may not generalize to a pandemic setting, where hospitals must acquire additional 
and costly durable medical equipment, incur additional staffing costs, acquire scarce medications 
and supplies at inflated costs, and even set up field hospitals. The true costs of the COVID-19 
pandemic will not be known for some time. Accordingly, the model results should be interpreted 
with appropriate caution given these uncertainties. 
Finally, modeling in general involves a considerable simplification of complex systems. The 
COVID-19 pandemic involves biological systems (the virus and human anatomy), systems of 
human behavior, healthcare systems and medical technology, and the economy. At this point in 
time, we simply do not know what future awaits us: implementation of large-scale testing and 
contact tracing could substantially curtail disease transmission; the transmissibility of the virus 
may be altered seasonally18; mutations may render the virus more or less infectious or lethal; prior 
infection may not impart immunity; a highly effective treatment or vaccine may be discovered; 
people may behave in unpredictable ways; and substantial economic pressures may alter the 
decision landscape. As the well-known aphorism has it, “all models are wrong, but some are 
useful,” and when it comes to policy models, even a rough approximation to the truth may be 
enough to render them useful, particularly in times of great urgency. 
 

CONCLUSIONS 
This model-based analysis is intended to inform policymakers on the potential impact of various 
pharmaceutical and non-pharmaceutical interventions to mitigate the COVID-19 crisis in the US. 
Social distancing is currently the primary intervention available to mitigate the pandemic; 
therefore, it is essential that policymakers effectively utilize it and engage public support. 
Meanwhile, policymakers should be prepared with plans to mobilize resources and increase 
health system capacity should social distancing fail to control infections and a surge begins to 
occur within their local community or state. Careful consideration should be given to when and 
how to ease social distancing, as the timing and the degree of social distancing are critical when 
dealing with the potential exponential growth of COVID-19. Adequate testing and disease 
surveillance will be essential to successfully implement easing of social distancing and to monitor 
for when reimplementation of social distancing policies may be necessary. Effectively utilizing 
these techniques will help to minimize the adverse health effects of the pandemic and the 
economic burden on society until more effective treatments, and ultimately a vaccine, become 
available to change the risk-benefit calculus or bring about herd immunity. Successfully navigating 
the COVID-19 pandemic will require that policymakers coordinate across local, state, and federal 
government; that evidence-based research inform policymaker perspectives; that developed 
plans are flexible and responsive to changing conditions; that critical resources (such as testing 
and an expanded public health workforce) are fully mobilized; and that innovative and available 
technologies are effectively employed. 
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APPENDIX A: TABLES 

Table A1. Model Parameters 
Population 
Parameter Value Source Comment 
US population 329,135,084 US Census 

202038 
Estimated US population as of January 1, 2020 

Initial immunity 0% Assumption Based on SARS-CoV-2 being a novel virus 
Initial infected 1 Holshue 

202039 
Based on the first US documented case on January 15, 2020 
(note that we assumed the first case in the US occurred a few 
weeks earlier on January 1) 

Infection Dynamics 
Parameter Value Source Comment 
Contacts/day 6.0 Assumption Estimated by calibrating the model to the US mortality data 

through April 15, 2020 (beyond that date, this parameter was 
varied to reflect alternative R0 scenarios and changes in social 
distancing) 

Infections/contact 10% Assumption This parameter works in conjunction with contacts/day to yield β, 
which along with the infectious period, determines the R0 

Latent period 4 days Sanche 
202022 

Estimated based on a reported incubation period of 5 days (note 
that the latent period is slightly shorter than the incubation period 
if asymptomatic transmission is possible) 

Infectious period 7 days Sanche 
202022 

Estimated based on a latent period of 4 days and a serial interval 
of 7–8 days (note that the serial interval = the latent period plus 
half of the infectious period; therefore, with a latent period of 4 
days and infectious period of 7 days the model assumes a serial 
interval of 7.5 days, which is in line with estimates of 7–8 days for 
the serial interval) 

Disease Severity 
Parameter Value Source Comment 
Mild 96% Worldometer 

20203  
Based on 4% of active cases worldwide being serious or critical 
and 96% being mild (as of 4/14/20)  

Severe 3% Wu 202040 Estimated based on approximately three-quarters (14% out of 
19%) of those hospitalized being severe 

Critical 1% Wu 202040 Estimated based on one-quarter (5% out of 19%) of those 
hospitalized being critical 

Mortality (Baseline) 
Parameter Value Source Comment 
Hospital 5.2% Rajgor 

2020,41 
Verity 202042 

Calibrated to yield a baseline infection fatality rate of 0.66% 

ICU 50.0% Bhatraju 
202043 

Study reported that 50% of critically ill patients died 

Mortality (Overcapacity) 
Parameter Value Source Comment 
Hospital bed 1.2 RR Eriksson 

201644 
Based on a review that found that hospital inpatient overcapacity 
increased mortality by 0%–30%, we assumed a 20% increase in 
risk of mortality 
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ICU bed 1.2 RR Eriksson 
201644 

Based on a review that found that hospital inpatient overcapacity 
increased mortality by 0%–30%, we assumed a 20% increase in 
risk of mortality 

Ventilator 1.6 RR Assumption, 
CNN45 

Assumed 60% increase in risk of mortality, which results in an 
80% chance of mortality (note that together, these parameters 
generate an overall 40% increase in IFR from 0.66%–0.9%, 
which is consistent with data showing a case fatality rate 40% 
higher for New York City [4.7%] than the rest of the country 
[3.4%] as reported by CNN) 

Healthcare Capacity 
Parameter Value Source Comment 
Hospital beds 826,331 AHA 202046 Number of non-ICU beds 
ICU beds 97,776 AHA 202046 Number of ICU beds 
Ventilators 62,000 Johns 

Hopkins 
202047 

Based on 62,000 full-feature mechanical ventilators (note that we 
did not include the 98,000 additional non-full-featured ventilators) 

Utilization 
Parameter Value Source Comment 
Hospital bed 
occupancy 

66% NCHS 
201848 

Occupancy rate for all hospitals in 2015 (Table 89) 

ICU bed 
occupancy 

66% NCHS 
201848 

Occupancy rate for all hospitals in 2015 (Table 89) 

Ventilators 
already in use 

47% Wunsch 
201349 

Estimated based on approximately 30% of ICU patients being on 
mechanical ventilation 

ED visit (% 
among infected) 

10% CDC 202050 Estimated based on the number of ED visits for COVID-like 
illness as of the 14th week of 2020 divided by the number of 
estimated infections in the model 

Hospital LOS 12 Bhatraju 
202043 

Median LOS among all patients (patients who survive and die) 

ICU LOS 9 Bhatraju 
202043 

Median LOS among all patients (patients who survive and die) 

Ventilator required 
for critical COVID-
19 patient 

75% Bhatraju 
202043 

Study reported that 75% of critically ill COVID-19 patients 
required mechanical ventilation 

Costs 
Parameter Value Source Comment 
ED visit $934 Muhuri 

2019,51  
BLS 202052 

$934, based on mean ED cost of $840 for influenza patients 
inflated from 2016 (CPI 463.675) to 2020 (CPI 515.605) using 
the medical care component of the BLS CPI 

Hospitalization $17,875 AHRQ 
2020,53 
BLS CPI52 

$17,875, based on HCUP cost of $16,075 (ICD-10 J12.89, viral 
pneumonia) inflated from 2016 (CPI 463.675) to 2020 (CPI 
515.605) using the medical care component of the BLS CPI 

Critical care $29,002 AHRQ, 
2020,53 
BLS 202052 

$29,002, based on HCUP cost of $26,081 (ICD-10 J80, acute 
respiratory distress syndrome) inflated from 2016 (CPI 463.675) 
to 2020 (CPI 515.605) using the medical care component of the 
BLS CPI 
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Table A2. Results: Unmitigated Scenarios (No Calibration) 
Scenario Low R0 = 2.2 Moderate R0 = 3.2 High R0 = 4.2 Moderate R0 = 3.2 

(With Mortality 
Due to 

Overcapacity) 
Peak (day) 

Infections 
Hospital 

 
August 16 
August 26 

 
May 28 
June 5 

 
April 25 
May 3 

 
May 28 
June 5 

Peak utilization (%) 
Hospital bed 
ICU bed 
Ventilator 

 
638% 

1,414% 
1,073% 

 
995% 

2,270% 
1,722% 

 
1,190% 
2,763% 
2,097% 

 
995% 

2,270% 
1,722% 

Outcomes (#, %) 
Susceptible 
Infected 
Recovereda 
Deada 

 
49.6M (15.1%) 

279.5M (84.9%) 
277.7M (99.3%) 
1.83M (0.66%) 

 
13.8M (4.2%) 

315.3M (95.8%) 
313.2M (99.3%) 
2.07M (0.66%) 

 
4.1M (1.2%) 

325.1M (98.8%) 
322.9M (99.3%) 
2.13M (0.66%) 

 
13.8M (4.2%) 

315.3M (95.8%) 
312.4M (99.1%) 
2.89M (0.92%) 

Visits (#) 
ED 
Hospital 
ICU 

 
28.0M 
8.4M 
2.8M 

 
31.5M 
9.5M 
3.2M 

 
32.5M 
9.8M 
3.3M 

 
31.5M 
9.5M 
3.2M 

Costs ($) 
ED 
Hospital 
ICU 
Totalb 

 
$26,109M 

$149,904M 
$81,072M 

$257,085M 

 
$29,448M 
$169,074M 
$91,440M 
$289,962M 

 
$30,361M 
$174,318M 
$94,276M 
$298,956M 

 
$29,448M 
$169,074M 
$91,440M 
$289,962M 

a For recovered and dead, percentage is percentage of those infected (not of entire population). 
b Values may not sum due to rounding. 
  



 
31 

Table A3. Results: Impact of Basic Reproduction Number (R0) 
Scenario Low R0 = 2.2 Low/Moderate 

R0 = 2.7 
Moderate R0 = 

3.2 (Base 
Case) 

Moderate/High 
R0 = 3.7 

High R0 = 4.2 

Peak (day) 
Infections 
Hospital 

 
April 15 
April 21 

 
April 15 
April 22 

 
April 15 
April 24 

 
April 15 
April 28 

 
May 4 

May 22 
Peak utilization (%) 

Hospital bed 
ICU bed 
Ventilator 

 
35% 
80% 
61% 

 
36% 
80% 
61% 

 
36% 
81% 
61% 

 
38% 
82% 
63% 

 
42% 
89% 
68% 

Outcomes (#, %) 
Susceptible 
Infected 
Recovereda 
Deada 

 
315.0M (95.7%) 

14.1M (4.3%) 
14.1M (99.3%) 
93,000 (0.66%) 

 
312.4M (94.9%) 

16.7M (5.1%) 
16.6M (99.3%) 

110,000 (0.66%) 

 
307.6M (93.5%) 

21.6M (6.5%) 
21.4M (99.3%) 

141,000 (0.66%) 

 
296.6M (90.1%) 

32.5M (9.9%) 
32.2M (99.3%) 

212,000 (0.65%) 

 
270.8M (82.3%) 
58.3M (17.7%) 
57.4M (99.3%) 

376,000 (0.65%) 
Visits (#) 

ED 
Hospital 
ICU 

 
1.4M 

424,000 
141,000 

 
1.7M 

501,000 
167,000 

 
2.2M 

646,000 
215,000 

 
3.2M 

974,000 
325,000 

 
5.8M 
1.7M 

578,000 
Costs ($) 

ED 
Hospital 
ICU 
Totalb 

 
$1,321M 
$7,587M 
$4,103M 

$13,012M 

 
$1,560M 
$8,956M 
$4,844M 

$15,359M 

 
$2,013M 

$11,555M 
$6,249M 

$19,818M 

 
$3,037M 

$17,409M 
$9,415M 

$29,862M 

 
$5,429M 

$31,003M 
$16,767M 
$53,199M 

a For recovered and dead, percentage is percentage of those infected (not of entire population). 
b Values may not sum due to rounding. 
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Table A4. Results: Impact of Healthcare System Capacity 
Scenario +25% Capacity 

(50% SD) 
+25% Capacity 

(60% SD) 
+50% Capacity 

(50% SD) 
+50% Capacity 

(60% SD) 
Peak (day) 

Infections 
Hospital 

 
June 26 
July 7 

 
July 12 
July 23 

 
June 26 
July 7 

 
July 12 
July 23 

Peak utilization (%) 
Hospital bed 
ICU bed 
Ventilator 

 
171% 
370% 
331% 

 
67% 

142% 
127% 

 
120% 
260% 
251% 

 
47% 

100% 
96% 

Outcomes (#, %) 
Susceptible 
Infected 
Recovereda 
Deada 

 
116.9M (35.5%) 
212.3M (64.5%) 
210.5M (99.2%) 
1.76M (0.83%) 

 
192.8M (58.6%) 
136.4M (41.4%) 
134.9M (99.3%) 
945,000 (0.70%) 

 
116.9M (25.5%) 
212.3M (64.5%) 
210.6M (99.3%) 
1.68M (0.79%) 

 
192.8M (58.6%) 
136.4M (41.4%) 
135.0M (99.3%) 
887,000 (0.65%) 

Visits (#) 
ED 
Hospital 
ICU 

 
21.2M 
6.4M 
2.1M 

 
13.6M 
4.1M 
1.4M 

 
21.2M 
6.4M 
2.1M 

 
13.6M 
4.1M 
1.4M 

Costs ($) 
ED 
Hospital 
ICU 
Totalb 

 
$19,825M 
$113,817M 
$61,556M 
$195,198M 

 
$12,721M 
$72,861M 
$39,406M 
$124,988M 

 
$19,825M 
$113,817M 
$61,556M 
$195,198M 

 
$12,721M 
$72,861M 
$39,406M 
$124,988M 

SD – social distancing. 
a For recovered and dead, percentage is percentage of those infected (not of entire population). 
b Values may not sum due to rounding. 
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Table A5. Results: Impact of Timing of Social Distancing 
Scenario March 16 

(Base Case) 
March 9 March 2 

Peak (day) 
Infections 
Hospital 

 
April 15 
April 24 

 
April 8 
April 17 

 
April 1 
April 11 

Peak utilization (%) 
Hospital bed 
ICU bed 
Ventilator 

 
36% 
81% 
61% 

 
11% 
24% 
18% 

 
3% 
7% 
5% 

Outcomes (#, %) 
Susceptible 
Infected 
Recovereda 
Deada 

 
307.6M (93.5%) 

21.6M (6.5%) 
21.4M (99.3%) 

141,000 (0.66%) 

 
322.2M (97.9%) 

6.9M (2.1%) 
6.9M (99.3%) 

45,000 (0.66%) 

 
327.1M (99.4%) 

2.1M (0.6%) 
2.1M (99.3%) 

14,000 (0.66%) 
Visits (#) 

ED 
Hospital 
ICU 

 
2.2M 

646,000 
215,000 

 
694,000 
208,000 
69,000 

 
208,000 
62,000 
21,000 

Costs ($) 
ED 
Hospital 
ICU 
Totalb 

 
$2,013M 

$11,555M 
$6,249M 

$19,818M 

 
$648M 

$3,721M 
$2,013M 
$6,382M 

 
$194M 

$1,114M 
$602M 

$1,910M 
a For recovered and dead, percentage is percentage of those infected (not of entire population). 
b Values may not sum due to rounding. 
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Table A6. Results: Impact of Level of Social Distancing 
Scenario Low = 60% Moderate = 75% 

(Base Case) 
High = 90% 

Peak (day) 
Infections 
Hospital 

 
July 12 
July 23 

 
April 15 
April 24 

 
April 15 
April 19 

Peak utilization (%) 
Hospital bed 
ICU bed 
Ventilator 

 
115% 
246% 
187% 

 
36% 
81% 
61% 

 
35% 
79% 
60% 

Outcomes (#, %) 
Susceptible 
Infected 
Recovereda 
Deada 

 
192.8M (58.6%) 
136.4M (41.4%) 
134.8M (99.2%) 
1.05M (0.78%) 

 
307.6M (93.5%) 

21.6M (6.5%) 
21.4M (99.3%) 

141,000 (0.66%) 

 
317.4M (96.4%) 

11.7M (3.6%) 
11.6M (99.3%) 
77,000 (0.66%) 

Visits (#) 
ED 
Hospital 
ICU 

 
13.6M 
4.1M 
1.4M 

 
2.2M 

646,000 
215,000 

 
1.2M 

351,000 
117,000 

Costs ($) 
ED 
Hospital 
ICU 
Totalb 

 
$12,721M 
$72,861M 
$39,406M 

$124,988M 

 
$2,013M 

$11,555M 
$6,249M 

$19,818M 

 
$1,094M 
$6,280M 
$3,396M 

$10,770M 
a For recovered and dead, percentage is percentage of those infected (not of entire population). 
b Values may not sum due to rounding. 
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Table A7. Results: Easing of Social Distancing 
Scenario Uniform Easing 

(R0 = 3.2) 
Uniform Easing 

(R0 = 2.2) 
Intermittent 

Easing 
(R0 = 3.2) 

Intermittent 
Easing 

(R0 = 2.2) 
Peak (day) 

Infections 
Hospital 

 
September 10 
September 21 

 
April 15 
April 21 

 
August 2 

August 10 

 
April 15 
April 21 

Peak utilization (%) 
Hospital bed 
ICU bed 
Ventilator 

 
243% 
523% 
397% 

 
35% 
80% 
61% 

 
111% 
247% 
188% 

 
35% 
80% 
61% 

Outcomes (#, %) 
Susceptible 
Infected 
Recovereda 
Deada 

 
125.6M (38.1%) 
203.6M (61.9%) 
201.0M (99.2%) 
1.70M (0.84%) 

 
304.5M (92.5%) 

24.6M (7.5%) 
23.7M (99.4%) 

153,000 (0.64%) 

 
201.4M (76.7%) 
127.8M (23.3%) 
124.6M (99.4%) 
938,000 (0.75%) 

 
311.8M (94.7%) 

17.3M (5.3%) 
17.2m (99.3%) 

113,000 (0.66%) 
Visits (#) 

ED 
Hospital 
ICU 

 
20.3M 
6.1M 
2.0M 

 
2.4M 

717,000 
239,000 

 
12.7M 
3.8M 
1.3M 

 
1.7M 

518,000 
173,000 

Costs ($) 
ED 
Hospital 
ICU 
Totalb 

 
$18,993M 
$108,749M 
$58,815M 
$186,558M 

 
$2,275M 

$12,818M 
$6,932M 

$22,025M 

 
$11,861M 
$67,373M 
$36,437M 
$115,671M 

 
$1,615M 
$9,262M 
$5,009M 

$15,885M 
a For recovered and dead, percentage is percentage of those infected (not of entire population). 
b Values may not sum due to rounding. 
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Table A8. Results: Impact of Pharmaceutical Interventions 
Scenario Base Case 

(R0 = 3.2, SD = 
75%) 

Reduce LOS 
15%, Mortality 

25% 

Reduce LOS 
25%, Mortality 

50% 

Reduce LOS 
50%, Mortality 

75% 
Peak (day) 

Infections 
Hospital 

 
April 15 
April 24 

 
April 15 
April 24 

 
April 15 
April 24 

 
April 15 
April 24 

Peak utilization (%)a 
Hospital bed 
ICU bed 
Ventilator 

 
36% 
81% 
61% 

 
36% 
81% 
61% 

 
36% 
81% 
61% 

 
36% 
81% 
61% 

Outcomes (#, %) 
Susceptible 
Infected 
Recoveredb 
Deadb 

 
307.6M (93.5%) 

21.5M (6.5%) 
21.4M (99.3%) 

141,000 (0.66%) 

 
307.6M (93.5%) 

21.5M (6.5%) 
21.4M (99.4%) 

136,000 (0.63%) 

 
307.6M (93.5%) 

21.5M (6.5%) 
21.4M (99.4%) 

131,000 (0.61%) 

 
307.6M (93.5%) 

21.5M (6.5%) 
21.4M (99.4%) 

126,000 (0.59%) 
Visits (#) 

ED 
Hospital 
ICU 

 
2.2M 

646,000 
215,000 

 
2.2M 

646,000 
215,000 

 
2.2M 

646,000 
215,000 

 
2.2M 

646,000 
215,000 

Costs ($) 
ED 
Hospital 
ICU 
Totalc 

 
$2,013M 

$11,555M 
$6,249M 

$19,818M 

 
$2,013M 

$11,555M 
$6,249M 

$19,818M 

 
$2,013M 

$11,555M 
$6,249M 

$19,818M 

 
$2,013M 

$11,555M 
$6,249M 

$19,818M 
SD – social distancing. 
a Note that peak utilization values do not change despite impact on LOS since peak utilization occurs before the 
introduction of the pharmaceutical intervention on July 1. 
b For recovered and dead, percentage is percentage of those infected (not of entire population). 
c Values may not sum due to rounding. 
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APPENDIX B: FIGURES 

Figure B1. Model Equations 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −𝛽𝛽
𝑑𝑑𝑆𝑆
𝑁𝑁

 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝛽𝛽
𝑑𝑑𝑆𝑆
𝑁𝑁
−  𝜎𝜎𝑑𝑑 

𝑑𝑑𝑆𝑆
𝑑𝑑𝑑𝑑

= 𝜎𝜎𝑑𝑑 −  𝛾𝛾𝑆𝑆 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝛾𝛾𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 − 𝛾𝛾𝑑𝑑 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝛾𝛾𝑆𝑆𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 + 𝛾𝛾𝑑𝑑 × (1 − 𝛿𝛿𝑑𝑑) 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝛾𝛾𝑑𝑑 ×  𝛿𝛿𝑑𝑑 

Where β = infection parameter; σ = latency parameter; γ = recovery parameter (separate values were used 
for mild and severe patients); δ = mortality parameter. 

Figure B2. Model Structure With Interventions 

 
NP – non-pharmaceutical; P – pharmaceutical 

Note: The intervention to reduce contacts (social distancing) is parameterized with 2 values: a percentage 
reduction and a start date (although scenarios with various degrees of social distancing over time and those 
involving multiple dates such as relaxing/removing social distancing were also implemented). The 
intervention to increase healthcare system capacity was parameterized by the percentage increase in the 
available resource for the 3 separate resources (hospital beds, ICU beds, and ventilators). No start date 
was applied as it was assumed that these increases in resources would occur early (ie, before the epidemic 
peak when they would be required). The interventions to reduce LOS and mortality are parameterized with 
2 values, the percentage reduction in LOS/mortality and a start day. 
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Figure B3. Calibration of Observed Deaths vs Modeled Deaths 

 

Figure B4. Calibration of Observed Cases vs Modeled Infections 

 
a Observed cases are those confirmed through diagnostic testing and represent a fraction of all infected. 
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Figure B5. Unmitigated Pandemic (R0 = 2.2) 

 

 

Figure B6. Unmitigated Pandemic (R0 = 4.2) 
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Figure B7. Estimated Reduction in Contact Due to Social Distancing 
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